109 research outputs found

    True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars

    Full text link
    The areal centroids of the youngest polar deposits on Mars are offset from those of adjacent paleopolar deposits by 5-10 degrees. We test the hypothesis that the offset is the result of true polar wander (TPW), the motion of the solid surface with respect to the spin axis, caused by a mass redistribution within or on the surface of Mars. In particular, we consider TPW driven by late-stage volcanism during the late Hesperian to Amazonian. There is observational and qualitative support for this hypothesis: in both North and South, observed offsets lie close to a great circle 90 degrees from Tharsis, as expected for polar wander after Tharsis formed. We calculate the magnitude and direction of TPW produced by mapped late-stage lavas for a range of lithospheric thicknesses, lava thicknesses, eruption histories, and prior polar wander events. If Tharsis formed close to the equator, the stabilizing effect of a fossil rotational bulge located close to the equator leads to predicted TPW of <2 degrees, too small to account for observed offsets. If, however, Tharsis formed far from the equator, late-stage TPW driven by low-latitude, late-stage volcanism would be 6-33 degrees, similar to that inferred from the location of paleopolar deposits. 4.4+/-1.3x10^19 kg of young erupted lava can account for the offset of the Dorsa Argentea Formation from the present-day south rotation pole. This mass is consistent with prior mapping-based estimates and would imply a mass release of CO2 by volcanic degassing similar to that in the atmosphere at the present time. The South Polar Layered Deposits are offset from the spin axis in the opposite sense to the other paleopolar deposits. This can be explained by an additional contribution from a plume beneath Elysium. We conclude with a list of observational tests of the TPW hypothesis.Comment: Accepted by Earth and Planetary Science Letters. 3 tables, 8 figure

    Detection of a dynamic topography signal in last interglacial sea-level records

    Get PDF
    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters

    Post-Glacial Isostatic Adjustment and Global Warming in Subarctic Canada: Implications for Islands of the James Bay Region

    Get PDF
    When Rupert’s Land and the North-Western Territory became a part of Canada as the Northwest Territories in 1870, the islands of James Bay were included within the new territorial boundaries. These same islands became a part of Nunavut in 1999, when the new territory was created from the eastern region of the Northwest Territories. Although the James Bay islands remain part of Nunavut, the western James Bay Cree assert that the western James Bay islands, including Akimiski Island, were part of the Cree traditional territory and that these islands have never been surrendered through treaty. This land-claim issue is further complicated by the fact that glacial isostatic adjustment (GIA) is occurring in the James Bay region and that the islands of James Bay may one day become part of mainland Ontario or Quebec. We used numerical models of the GIA process to predict how shorelines in James Bay will migrate over the next 1000 years as a result of post-glacial sea-level changes. These predictions, which were augmented by an additional contribution associated with sea-level rise due to global warming, were used to determine whether the islands in James Bay will ever become part of the mainland. The predictions for the islands are sensitive to the two primary inputs into the GIA predictions, namely the models for the geometry of the ancient Laurentide ice sheet and the viscoelastic structure adopted for the solid earth, as well as to the amplitude of the projected global warming signal. Nevertheless, it was found that many of the smaller and larger islands of James Bay will likely join the mainland of either Ontario or Quebec. For example, using a global warming scenario of 1.8 mm sea-level rise per year, a plausible range of GIA models suggests that the Strutton Islands and Cape Hope Islands will join mainland Quebec in ~400 years or more, while Akimiski Island will take at least ~700 years to join mainland Ontario. Using the same GIA models, but incorporating the upper boundary of global warming scenarios of 5.9 mm sea-level rise per year, the Strutton Islands and Cape Hope Islands are predicted to join mainland Quebec in ~600 years or more, and Akimiski Island is predicted not to join mainland Ontario. Since Akimiski Island is already being prospected for diamonds and the future ownership of emergent land remains an issue, these findings have great economic importance.Quand la Terre de Rupert et le Territoire du Nord-Ouest ont joint les rangs du Canada sous le nom de Territoires du Nord-Ouest en 1870, les îles de la baie James ont été intégrées aux nouvelles frontières territoriales. Ces mêmes îles font maintenant partie du Nunavut depuis 1999, lorsque le nouveau territoire a été créé à partir de la région est des Territoires du Nord-Ouest. Bien que les îles de la baie James fassent toujours partie du Nunavut, les Cris de l’ouest de la baie James soutiennent que les îles du côté ouest de la baie James, dont l’île Akimiski, faisaient partie du territoire traditionnel cri et que ces îles n’ont jamais été cédées par l’intermédiaire d’un traité. Cette revendication territoriale est davantage compliquée par le fait qu’un ajustement isostatique glaciaire est en train de se produire dans la région de la baie James au point où un de ces jours, les îles de la baie James pourraient faire partie de la partie continentale de l’Ontario ou du Québec. Nous avons employé des modèles numériques du processus d’ajustement isostatique pour prédire de quelle manière les littoraux de la baie James migreront au cours des 1000 prochaines années en raison des changements postglaciaires caractérisant le niveau de la mer. Ces prévisions, qui ont été enrichies de données supplémentaires se rapportant à l’élévation du niveau de la mer attribuable au réchauffement climatique, ont été utilisées pour déterminer si les îles de la baie James feront un jour partie du continent. Les prévisions relatives aux îles sont sensibles à deux intrants principaux en matière de prévisions d’ajustement isostatique, notamment les modèles de géométrie de la nappe glaciaire du Laurentien ancien ainsi que la structure viscoélastique adoptée pour la croûte terrestre, de même qu’à l’amplitude du signal projeté relativement au réchauffement climatique. Néanmoins, nous avons déterminé que grand nombre des îles plus petites et plus grosses de la baie James se rattacheront vraisemblablement à la partie continentale de l’Ontario ou du Québec. Par exemple, en s’appuyant sur un scénario de réchauffement climatique donnant lieu à une élévation du niveau de la mer de 1,8 mm par année, une étendue plausible pour les modèles d’ajustement isostatique laisse entendre que les îles Strutton et les îles du cap Hope rejoindront la partie continentale du Québec dans environ 400 ans ou plus, tandis que l’île Akimiski mettra environ 700 ans à s’intégrer à la partie continentale de l’Ontario. À l’aide des mêmes modèles d’ajustement isostatique, mais en tenant compte de la borne supérieure des scénarios de réchauffement climatique qui correspond à une élévation du niveau de la mer de 5,9 mm par année, les îles Strutton et les îles du cap Hope devraient rejoindre la partie continentale du Québec dans environ 600 ans ou plus, tandis que l’île Akimiski ne rejoindrait pas la partie continentale de l’Ontario. Puisque l’île Akimiski fait déjà l’objet de l’exploration de diamants et que l’appartenance future des terres émergentes constitue toujours un enjeu, ces observations revêtement une grande importance du point de vue économique

    Sea Level Change in the Western James Bay Region of Subarctic Ontario: Emergent Land and Implications for Treaty No. 9

    Get PDF
    In 1905 and 1906, the Cree of the southwestern James Bay region signed Treaty No. 9 whereby they relinquished to the Canadian government their claim to the lands south of the Albany River (the northern boundary of the province of Ontario at the time). The official text of Treaty No. 9 made no mention of land submerged below water cover, and thus the Cree did not relinquish such regions at that time. By contrast, the Cree of the northwestern James Bay and southwestern Hudson Bay region who signed the 1929–30 Adhesions to Treaty No. 9 relinquished their claims to “land covered by water” for the area bounded on the south by the northerly limit of Treaty No. 9, as this clause was specifically included in the text of the adhesion. The issue of “land covered by water” is significant because the western James Bay region has been, and will continue to be, subject to sea level changes associated with ongoing adjustments due to the last ice age and modern global warming signals. In the absence of detailed maps, we used models of these processes, constrained by available geophysical and geodetic data sets, to retrodict shoreline changes and the rate of land emergence over the last two centuries within the boundaries specified by Treaty No. 9. We also project shoreline migration to the end of the 21st century within the same region. The rate of land emergence since 1905 in the area south of the Albany River is estimated as ~3.0 km2/yr. Over the next century, land will continue to emerge in this region at a mean rate of ~1.4 km2/yr. This emergent land should be a subject of consideration within any comprehensive land claim put forward by the Cree; in this regard, it will be interesting to see how the Canadian judicial system and the Comprehensive Claims Branch handle the novel issue of emergent land.En 1905 et 1906, les Cris du sud-ouest de la région de la baie James ont signé le Traité no 9, par le biais duquel ils ont cédé au gouvernement du Canada leur droit de revendication des terres au sud de la rivière Albany (la limite nord de la province de l’Ontario à l’époque). Le texte officiel du Traité no 9 ne faisait aucune mention des terres submergées sous l’eau, si bien que les Cris n’ont pas renoncé à ces régions à ce moment-là. En revanche, les Cris du nord-ouest de la baie James et du sud-ouest de la baie d’Hudson qui ont signé les adhésions au Traité no 9 (1929-1930) ont renoncé à leurs revendications aux « terres recouvertes d’eau » dans la zone délimitée au sud par la limite nord du Traité no 9, puisque cette clause était expressément incluse dans le texte de l’adhésion. La question des « terres recouvertes d’eau » est importante parce que l’ouest de la région de la baie James a été et continuera d’être assujettie aux variations du niveau de la mer liées aux ajustements continus découlant de la dernière période glaciaire et des récents signes de réchauffement planétaire. En l’absence de cartes détaillées, nous avons utilisé des modèles de ces processus, limités par les ensembles de données géophysiques et géodésiques disponibles, pour déterminer de façon rétrospective les changements du littoral et le taux d’émergence des terres au cours des deux derniers siècles dans les limites précisées dans le Traité no 9. Nous faisons également une projection de la migration du littoral jusqu’à la fin du XXIe siècle dans cette même région. Le taux d’émergence des terres depuis 1905 dans la région au sud de la rivière Albany est estimé à ~3,0 km2/année. Au cours du prochain siècle, les terres continueront d’émerger dans cette région au taux moyen de ~1,4 km2/année. Ces terres émergées devraient être prises en compte dans toute revendication territoriale globale présentée par les Cris. À cet égard, il sera intéressant de voir comment le système judiciaire canadien et la Direction générale des revendications globales traiteront cette nouvelle question des terres émergées

    Coastal paleogeography of the Pacific Northwest, USA, for the last 12,000 years accounting for three-dimensional earth structure

    Get PDF
    Predictive modeling of submerged archaeological sites requires accurate sea-level predictions in order to reconstruct coastal paleogeography and associated geographic features that may have influenced the locations of occupation sites such as rivers and embayments. Earlier reconstructions of the paleogeography of parts of the western U.S. coast used an assumption of eustatic sea level, but this neglects the large spatial variations in relative sea level (RSL) associated with glacial isostatic adjustment (GIA) and tectonics. Subsequent work using a one-dimensional (1-D) solid Earth model showed that reconstructions that accounted for GIA result in significant differences from those based on eustatic sea level. However, these analyses neglected the complex three-dimensional (3-D) solid Earth structure associated with the Cascadia subduction zone that has also strongly influenced RSL along the Oregon-Washington (OR-WA) coast, requiring that the paleogeographic reconstructions must also account for this effect. Here we use RSL predictions from a 3-D solid Earth model that have been validated by RSL data to update previous paleogeographic reconstructions of the OR-WA coast for the last 12 kyr based on a 1-D solid Earth model. The large differences in the spatial variations in RSL on the OR-WA continental shelves predicted by the 3-D model relative to eustatic and 1-D models demonstrate that accurate reconstructions of coastal paleogeography for predictive modeling of submerged archaeological sites need to account for 3-D viscoelastic Earth structure in areas of complex tectonics

    Reciprocity and sensitivity kernels for sea level fingerprints

    Full text link
    Reciprocity theorems are established for the elastic sea level fingerprint problem including rotational feedbacks. In their simplest form, these results show that the sea level change at a location x due to melting a unit point mass of ice at x' is equal to the sea level change at x' due to melting a unit point mass of ice at x. This identity holds irrespective of the shoreline geometry or of lateral variations in elastic Earth structure. Using the reciprocity theorems, sensitivity kernels for sea level and related observables with respect to the ice load can be readily derived. It is notable that calculation of the sensitivity kernels is possible using standard fingerprint codes, though for some types of observable a slight generalisation to the fingerprint problem must be considered. These results are of use within coastal hazard assessment and have a range of potential applications within studies of modern-day sea level change.Comment: Paper submitted to Geophysical Journal Internationa

    Revisiting tectonic corrections applied to Pleistocene sea-level highstands

    Get PDF
    Tectonic displacement contaminates estimates of peak eustatic sea level (and, equivalently, minimum continental ice volumes) determined from the elevation of Quaternary interglacial highstand markers. For sites at which a stratigraphic or geomorphic marker of peak Marine Isotope Stage (MIS) 5e sea level exists, the standard approach for estimating local tectonic uplift (or subsidence) rates takes the difference between the elevation of the local highstand marker and a reference MIS 5e eustatic value, commonly chosen as +6 m, and divides by the age of the marker. The resulting rate is then applied to correct the elevation of all other local observed sea-level markers for tectonic displacement, including peak highstands of different ages (e.g., MIS 5a, MIS 5c and MIS 11), under the assumption that the tectonic rate remained constant over those periods. This approach introduces two potentially significant errors. First, the peak eustatic value adopted for MIS 5e in most previous studies (i.e., +6 m) is likely incorrect. Second, local peak sea level during MIS 5e is characterized by significant departures from eustasy due to glacial isostatic adjustment in response to both successive glacial–interglacial cycles and excess polar ice-sheet melt relative to present day values. We use numerical models of glacial isostatic adjustment that incorporate both of these effects to quantify the plausible range of the combined error and show that, even at sites far from melting ice sheets, local peak sea level during MIS 5e may depart from eustasy by 2–4 m, or more. We also demonstrate that the associated error in the estimated tectonic rates can significantly alter previous estimates of peak eustatic sea level during Quaternary highstands, notably those associated with earlier interglacials (e.g., MIS 11)
    • …
    corecore